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Appendix A: Qualitative results

Reconstructed models for two scenes from the SUN3D
dataset are shown in Figures 1 and 2.

Appendix B: Pairwise registration algorithm

This appendix summarizes the pairwise registration al-
gorithm used in our pipeline (PCL modified). This sup-
ports Section 4 in the paper. Given a pair of fragments
(Pi,Pj), the algorithm computes a rigid transformation
Tij that aligns them as well as possible. The algorithm is
based on the work of Rusu et al. [7], with two main modifi-
cations. First, we sample constellations of four points rather
than three, which slightly lowers recall but significantly in-
creases precision. Second, we have added a number of val-
idation steps that rapidly prune poorly matching constella-
tions and allow a larger number of constellations to be tested
within the same computation budget, yielding higher recall.

The steps are given in Algorithm 1. The two frag-
ments are uniformly covered by sample points. For each
sample point s, we compute its FPFH descriptor F(s), a
33-dimensional descriptor of local shape. The descriptors
are used to match samples across fragments. In particular,
given a sample point p ∈ Pi, it is matched to a sample
qp ∈ Pj that is closest in descriptor space:

qp = argmin
q∈Pj

‖F(p)− F(q)‖2. (1)

A transformation Tij is then computed using RANSAC.
Each iteration randomly samples four pairs (p,qp) and
computes a transformation T that aligns the four samples
from Pi to their counterparts in Pj in a least-squares sense.
This transformation is passed through a number of valida-
tion steps. If multiple transformations pass the validation,
the algorithm outputs the transformation that maximizes the
overlap of the registered fragments.
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Algorithm 1: Pairwise registration
input : A pair of fragments (Pi,Pj)
output : Transformation Tij and correspondence set Kij

Downsample Pi = {p} and Pj = {q};
Compute normals {np} and {nq};
Compute FPFH features {F(p)} and {F(q)};
Tij ← ∅, Kij ← ∅;
max correspondences← 0;

for i← 1 to max iteration do

// RANSAC iteration;
Randomly pick four points (p0,p1,p2,p3) from Pi;
Find matching samples (q0,q1,q2,q3) on Pj

using equation (1);
Compute transformation T that aligns these two sets

of samples;

// Validation;
if ∠(Tnpk ,nqk ) > 30◦ then

continue;

if ‖pk − pk+1‖ < 0.9 ‖qk − qk+1‖ or vice versa then
continue;

Compute correspondences K between TPi and Pj ;
if |K| < 1

3
min(|Pi|, |Pj |) then

continue;

// Update;
if |K| > max correspondences then

Tij ← T, Kij ← K;
max correspondences← |K|;

Appendix C: Running times

Table 1 reports running times for all steps of our pipeline.
This supports Section 6.1 in the paper.

Appendix D: Augmented ICL-NUIM dataset

This appendix describes the augmented ICL-NUIM
dataset. This supports Section 6.1 in the paper.

The dataset is based on the synthetic environments pro-
vided by Handa et al. [2]. The authors provided two mod-
els of indoor environments – a living room and an office –
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(a) Kintinuous (b) DVO SLAM

(c) SUN3D SfM (d) Our approach

(e) Optional non-rigid refinement

Figure 1. Reconstruction of the harvard c6 scene from the SUN3D dataset. (a) Reconstruction produced by Kintinuous [9]. (b) Recon-
struction produced by DVO SLAM [4]. (c) Reconstruction produced by the off-line RGB-D structure-from-motion pipeline of Xiao et
al. [10]. (d) Reconstruction produced by our approach. (e) An optional non-rigid refinement of our result using SLAC [11].



(a) Kintinuous (b) DVO SLAM

(c) SUN3D SfM (d) Our approach

(e) Optional non-rigid refinement

Figure 2. Reconstruction of the mit 76 studyroom scene from the SUN3D dataset. (a) Reconstruction produced by Kintinuous [9]. (b)
Reconstruction produced by DVO SLAM [4]. (c) Reconstruction produced by the off-line RGB-D structure-from-motion pipeline of Xiao
et al. [10]. (d) Reconstruction produced by our approach. (e) An optional non-rigid refinement of our result using SLAC [11].



Sequence # of frames Fragment
creation

Geometric
registration

Robust
optimization

ICP
refinement Integration Total time # of triangles

Apartment 17,391 10 75 <1 194 107 387 15,759,593

Sy
nt

he
tic

Living room 1 2,870 2 29 <1 120 26 178 12,380,759
Living room 2 2,350 2 24 <1 32 5 64 8,042,303

Office 1 2,690 2 29 <1 46 8 86 12,989,830
Office 2 2,538 2 27 <1 41 10 81 7,613,056

SU
N

3D

hotel umd 1,869 1 15 <1 11 5 33 9,060,783
harvard c5 2,063 1 18 <1 50 5 75 4,913,239
harvard c6 1,517 1 10 <1 13 4 29 6,143,208
harvard c8 1,003 1 4 <1 18 12 36 16,316,704

mit 32 d507 5,444 3 126 <1 40 17 187 8,965,766
mit 76 studyroom 3,322 2 45 <1 47 19 114 15,837,152
mit dorm next sj 2,696 2 25 <1 27 7 62 3,665,537

mit lab hj 1,906 1 15 <1 13 6 36 9,544,549

Table 1. Running times (in minutes) for all steps of the presented approach. Running times were measured on a workstation with an Intel
Core i7-3770 3.5GHz CPU and 16GB of RAM.

along with complete infrastructure for rendering color and
depth videos. Photorealistic color videos are produced with
global illumination.

We augment the dataset in a number of ways. First, the
original dataset released by Handa et al. provides four ref-
erence camera trajectories for each scene. However, these
trajectories are short and do not model comprehensive scan-
ning behaviors. The average reference trajectory is 39 sec-
onds long and images only 45% of the surface area of the
living room and 40% of the surface area of the office. Sec-
ond, the provided noise model for the range camera is quite
limited, yielding unrealistically clean depth images. One
indication of the simplicity of the original trajectories and
noise model is that pure visual odometry approaches per-
form very well, due to limited odometry drift and lack of
complicated loop closures. The third limitation of the orig-
inal release is the lack of a reference surface model for the
office scene, which is represented procedurally; this pre-
cludes the evaluation of surface reconstruction accuracy on
this scene.

We have adapted the dataset to evaluation of complete
scene reconstruction pipelines. First, we have created two
camera trajectories for each scene that model thorough
handheld imaging for the purpose of comprehensive recon-
struction. Table 2 lists the lengths and the surface area cov-
erage rates of the trajectories. Second, we have integrated
a comprehensive noise model that incorporates disparity-
based quantization, realistic high-frequency noise, and a
model of low-frequency distortion estimated on a real depth
camera. This noise model has been previously used for sur-
face reconstruction evaluation on synthetic data [12, 11].
Third, we have generated a dense point-based surface model
for the office scene that enables the measurement of surface
reconstruction accuracy. We have corresponded with the au-
thors and verified that these extensions are in line with the
intended usage of the dataset. The augmented dataset will
be released upon publication.

Reconstructed models for two of the sequences are
shown in Figures 3 and 4.

Time (sec) Length (meters) Coverage (%)
Living room 1 96 37.2 94
Living room 2 78 36.8 85

Office 1 90 32.1 91
Office 2 85 38.1 83

Table 2. Statistics for the augmented ICL-NUIM dataset. Camera
trajectory duration, arc length, and surface coverage rates for the
four simulated sequences.

Appendix E: Reconstruction accuracy
In this appendix we report additional measures of recon-

struction accuracy on ICL-NUIM sequences. This supports
Section 6.2 in the paper. Table 3 in the paper reports the
mean distance of each reconstructed model to the ground-
truth surface. Table 3 below reports the corresponding me-
dian distances. Our approach reduces the average median
error by a factor of 2.7 relative to the closest alternative
approach (SUN3D SfM). Table 4 reports the accuracy of
the camera trajectories estimated by each pipeline, using
the RMSE metric described by Handa et al. Our approach
reduces the average error by a factor of 2.2 relative to the
closest alternative approach.

Kintin-
uous

DVO
SLAM

SUN3D
SfM Ours GT

trajectory
Living room 1 0.17 0.16 0.08 0.03 0.03
Living room 2 0.10 0.05 0.06 0.05 0.02

Office 1 0.10 0.08 0.11 0.02 0.01
Office 2 0.09 0.07 0.06 0.03 0.02

Average 0.12 0.09 0.08 0.03 0.02

Table 3. Surface reconstruction accuracy on ICL-NUIM se-
quences. Median distance of each reconstructed model to the
ground-truth surface, in meters.



(a) Kintinuous (b) DVO SLAM

(c) SUN3D SfM (d) Our approach

(e) Optional non-rigid refinement

Figure 3. Reconstruction of the Living room 1 sequence from the augmented ICL-NUIM dataset. (a) Reconstruction produced by Kintin-
uous [9]. (b) Reconstruction produced by DVO SLAM [4]. (c) Reconstruction produced by the RGB-D structure-from-motion pipeline of
Xiao et al. [10]. (d) Reconstruction produced by our approach. (e) An optional non-rigid refinement of our result using SLAC [11].



(a) Kintinuous (b) DVO SLAM

(c) SUN3D SfM (d) Our approach

(e) Optional non-rigid refinement

Figure 4. Reconstruction of the Office 1 sequence from the augmented ICL-NUIM dataset. (a) Reconstruction produced by Kintinuous [9].
(b) Reconstruction produced by DVO SLAM [4]. (c) Reconstruction produced by the RGB-D structure-from-motion pipeline of Xiao et
al. [10]. (d) Reconstruction produced by our approach. (e) An optional non-rigid refinement of our result using SLAC [11].



Kintin-
uous

DVO
SLAM

SUN3D
SfM Ours

Living room 1 0.27 1.02 0.21 0.10
Living room 2 0.28 0.14 0.23 0.13

Office 1 0.19 0.11 0.24 0.06
Office 2 0.26 0.11 0.12 0.07
Average 0.25 0.35 0.20 0.09

Table 4. Accuracy of estimated camera trajectories (RMSE).

Appendix F: Perceptual evaluation procedure

This appendix describes the experimental procedure
used for quantitative evaluation of reconstruction quality
on real-world scenes. This supports Section 6.3 in the pa-
per. Our experimental design is based on pairwise compar-
isons, which are commonly used for quantitative evaluation
of computer graphics techniques in the absence of ground-
truth measurements [5, 3, 6, 1]. The pairwise comparison
interface is demonstrated in the supplementary video.

The interface shows a short reference clip from an input
color video. Below the reference video, two correspond-
ing renderings of different reconstructions are shown side
by side, in random left-right order. Each video shows a col-
ored reconstruction of the scene rendered along the corre-
sponding camera trajectory. The task is to indicate which
of the two clips is more similar to the reference (or choose
neither).

Each ICL-NUIM and SUN3D sequence was tightly cov-
ered with randomly sampled timestamps that are at least 10
seconds apart. For each sampled timestamp, a 1.5-second
snippet of the original color video and a corresponding ren-
dering of each colored model in the comparison set were
produced.

Experiments were conducted using Amazon Mechanical
Turk (MTurk). A single Human Intelligence Task (HIT)
comprised all pairwise comparisons for a single sampled
timestamp, along with four control questions that check for
consistency and correctness. To check for consistency, two
control questions replicate randomly chosen comparisons in
the HIT with flipped left-right order. The other two control
questions check for correctness by showing comparisons for
which the correct answer is unambiguous. Each HIT is pre-
ceded by an introductory screen in which the task is ex-
plained. We rejected HITs for which the answers to two or
more control questions were incorrect. Workers were paid
10¢ per HIT. All HITs were duplicated 20 times.

The experimental procedure was used to collect pair-
wise comparisons and compute BRE scores [8] for the ICL-
NUIM sequences. We evaluated models reconstructed by
Kintinuous, DVO SLAM, SUN3D SfM, our approach, and
by integration of the noisy input data along the ground-truth
trajectory. 32 timestamps were sampled from the four se-
quences. Each HIT comprised

(
5
2

)
comparisons among the

five reconstructed models, plus 4 control questions for a to-
tal of 14 comparisons per HIT. 640 HITs were deployed. A
total of 71 unique workers performed 8,960 pairwise com-
parisons. 8% of the HITs were rejected based on the con-
trols. Excluding control questions and “About the same”
responses (see supplementary video), 5,083 pairwise com-
parisons yielded strict preferences that contributed to the
computation of BRE scores.

The same experimental procedure was applied to the
eight SUN3D sequences. We evaluated models recon-
structed by Kintinuous, DVO SLAM, SUN3D SfM, and our
approach, along with the manually-assisted reconstructions
provided by Xiao et al. 63 timestamps were sampled from
the eight sequences. Each HIT consisted of 14 pairwise
comparisons including controls. 1,260 HITs were deployed
and a total of 114 unique workers performed 17,640 com-
parisons. 14% of the HITs were rejected. Excluding control
questions and “About the same” responses, 8,400 pairwise
comparisons yielded strict preferences that contributed to
the computation of BRE scores.
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